Prof. Haq Nawaz | Materials Chemistry | Best Researcher Award

Prof. Haq Nawaz | Materials Chemistry | Best Researcher Award

Prof. Haq Nawaz | Materials Chemistry | Professor of Chemistry at Huaiyin Normal University, School of Chemistry and Chemical Engineering, China

Dr. Haq Nawaz is a Professor of Chemistry at the School of Chemistry and Chemical Engineering, Huaiyin Normal University, China. With over 65 publications in high-impact journals, his research focuses on biomass-derived functional materials, cellulose modification, and fluorescent sensors. He has received prestigious fellowships, including the CAS President’s International Fellowship Initiative (PIFI) and the CNPq-TWAS Ph.D. Fellowship. Dr. Nawaz has extensive experience in academia and research, with postdoctoral stints at the Chinese Academy of Sciences (CAS) and Beijing Forestry University. His work on biopolymer-based smart materials has contributed significantly to green chemistry and sustainable material development. He actively participates in national and international research projects, securing major grants. His expertise spans chemical/physical modification of cellulose and lignin, developing super-strong films, fibers, and paper electronics. His dedication to multifunctional material synthesis makes him a leading scientist in his field.

Professional Profile :         

Orcid

Scopus  

Summary of Suitability for Award:

Dr. Haq Nawaz is an exceptional candidate for the “Best Researcher Award”, given his extensive contributions to the field of biomass-based smart materials and green chemistry. With over 65 high-impact research articles in prestigious journals such as ACS Nano, Chemical Engineering Journal, Green Chemistry, and Analytical Chemistry, he has demonstrated scientific excellence and innovation. His research, which focuses on developing sustainable materials, functional fluorescent sensors, and advanced bio-based polymers, has profound implications for renewable energy, smart packaging, and biodegradable materials. Dr. Nawaz has successfully led and contributed to multiple funded research projects, securing substantial grants from the National Natural Science Foundation of China and other institutions. His global academic journey, spanning research roles in China, Brazil, Pakistan, Finland, and the UK, highlights his international impact. Additionally, his recognition through prestigious fellowships, including the CAS President’s International Fellowship Initiative (PIFI) and CNPq-TWAS Postgraduate Fellowship, further solidifies his status as a leading scientist in his domain. With an impressive research portfolio, a strong publication record, and a commitment to innovation in green chemistry and sustainable materials, Dr. Haq Nawaz is a highly deserving candidate for the “Best Researcher Award”. His work not only advances scientific knowledge but also contributes to environmental sustainability and technological advancements in material science.

🎓Education:

Dr. Haq Nawaz holds a Ph.D. in Physical Organic Chemistry from the Institute of Chemistry, University of Sao Paulo, Brazil (2010-2014), funded by a CNPq-TWAS fellowship. During his doctoral studies, he conducted a sandwich research project at Aalto University, Finland (2013). Prior to this, he completed an M.Sc. in Organic Chemistry at The Islamia University of Bahawalpur, Pakistan (2003-2005), where he earned a Distinction Certificate. He also passed competitive exams, including the International Subjective GRE (Chemistry) with 68 percentile and the Graduate Assessment Test (GAT) with 87 percentile. Additionally, he served as a Research Assistant at H.E.J. Research Institute of Chemistry, University of Karachi (2006-2009). His strong academic background laid the foundation for his expertise in biopolymer chemistry, material science, and functional materials development.

🏢Work Experience:

Dr. Haq Nawaz has an extensive professional career in academia and research. He is currently a Professor of Chemistry at Huaiyin Normal University, China (2023–Present). Previously, he was a Research Associate at Beijing Forestry University (2019–2023) under the Talent Induction Program (Category A). He completed two Postdoctoral Fellowships at the Chinese Academy of Sciences (CAS) (2016–2019), supported by the CAS President’s International Fellowship Initiative (PIFI) and the Young International Scientists Fellowship. Dr. Nawaz also worked as an Assistant Professor at the University of Education, Lahore (2015–2016). During his Ph.D., he served as a Research Assistant at H.E.J. Research Institute, University of Karachi (2006–2009). His expertise in biopolymer modification, fluorescent sensor design, and sustainable material development has led to multiple high-impact publications and significant contributions to biomass-based functional materials.

🏅Awards: 

Dr. Haq Nawaz has been recognized for his outstanding contributions to chemistry and material sciences through numerous prestigious fellowships and research awards. He was a recipient of the CAS President’s International Fellowship Initiative (PIFI) for postdoctoral research at the Chinese Academy of Sciences (ICCAS), Beijing (2017–2019). Additionally, he received the Young International Scientists Fellowship from the Chinese Academy of Sciences (2016–2017). His doctoral research was fully funded by the CNPq-TWAS Postgraduate Fellowship (2010–2014), a prestigious award from the Third World Academy of Sciences (TWAS) and the Brazilian National Council for Scientific and Technological Development (CNPq). He also secured a six-month IRSIP scholarship from the Higher Education Commission of Pakistan (HEC) to conduct research at the University of Oxford, UK. Earlier in his career, he received a Research Assistant Fellowship from H.E.J. Research Institute of Chemistry, University of Karachi, Pakistan (2006–2009).

🔬Research Focus:

Dr. Haq Nawaz specializes in biomass dissolution and transformation into multifunctional materials, with a primary emphasis on cellulose and lignin-based smart materials. His work involves the chemical and physical modification of lignocellulosic materials to develop fluorescent sensors, electrospun fibers, regenerated fibers, and high-performance films for use in paper electronics, OLEDs, and sustainable packaging. He is particularly interested in designing cellulose-based solid fluorescent materials, synthesizing ionic liquids and deep eutectic solvents (DES) for biomass processing, and developing eco-friendly solvents for sustainable material fabrication. His research also extends to the selective separation and functionalization of agricultural straw components for enhanced adsorption and material applications. By integrating advanced material science with green chemistry, he aims to pioneer innovative and sustainable technologies for bio-based electronic devices, biodegradable packaging, and energy-efficient material.

Publication Top Notes:

Translucent and Anti-ultraviolet Aramid Nanofiber Films with Efficient Light Management Fabricated by Sol–Gel Transformation

Facile Preparation of Lignin-Based Material for Fluorescent Detection of Pyrrole

An Efficient Approach for the Production of Polyhydroxybutyrate from Lignin by Alkali-Halophile Halomonas alkalicola M2

Cellulose-Based Fluorescent Material for Extreme pH Sensing and Smart Printing Applications

Anisotropic Cellulose Nanofibril Aerogels Fabricated by Directional Stabilization and Ambient Drying for Efficient Solar Evaporation

Lignin Nanorods Reinforced Nanocomposite Hydrogels with UV-Shielding, Anti-Freezing and Anti-Drying Applications

Laminar Regenerated Cellulose Membrane Employed for High-Performance Photothermal-Gating Osmotic Power Harvesting

Lead in Drinking Water: Adsorption Method and Role of Zeolitic Imidazolate Frameworks for Its Remediation: A Review

Janus Biopolymer Sponge with Porous Structure Based on Water Hyacinth Petiole for Efficient Solar Steam Generation

Surface-Microstructured Cellulose Films Toward Sensitive Pressure Sensors and Efficient Triboelectric Nanogenerators

 

Dr. Halligudra Guddappa | Materials Chemistry | Best Researcher Award

Dr. Halligudra Guddappa | Materials Chemistry | Best Researcher Award

Dr. Halligudra Guddappa | Materials Chemistry | Assistant Professor at ATME College of Engineering, India

Dr. Halligudra Guddappa is an accomplished Assistant Professor & Research Faculty in the Department of Chemistry at ATMECE, Mysuru, India. A gold medalist in Chemistry and a DST-INSPIRE Fellow, he has made significant contributions to nanochemistry, catalysis, and analytical chemistry. His expertise lies in nanostructured metal/metal oxide-based catalysts for organic transformations. With a strong background in teaching and research, he actively mentors students and secures research grants. Dr. Guddappa has presented at international conferences, winning awards for his outstanding research presentations. His industrial exposure at ITC R&D further enhances his applied scientific approach. Passionate about interdisciplinary research, he continues to contribute through peer-reviewed publications, book chapters, and patents. His dedication to innovative material development and sustainable chemistry makes him a recognized figure in the field.

Professional Profile :         

Google Scholar

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Halligudra Guddappa is an exceptionally accomplished researcher in chemistry, specializing in nanochemistry, catalysis, and green chemistry. With a Ph.D. in Chemistry from VTU, Muddenahalli, and a DST-INSPIRE Fellowship (Government of India), his academic excellence and research contributions are highly commendable. His work in nanostructured metal/metal oxide catalysts has made a significant impact on sustainable catalysis, pollutant degradation, and energy storage applications.  Additionally, Dr. Guddappa has received several prestigious accolades, including the Gold Medal for securing the 1st Rank in M.Sc. Chemistry, multiple Best Poster Presentation Awards at international conferences, and the Best Flash Talk Presentation Award.  Dr. Halligudra Guddappa’s academic excellence, innovative research in nanotechnology and catalysis, numerous awards, and contributions to sustainable chemistry make him a strong contender for the “Best Researcher Award”. His ability to bridge fundamental research with practical applications, secure research funding, and mentor future scientists is truly commendable. Awarding him this recognition would not only honor his outstanding contributions but also motivate further advancements in nanochemistry and catalysis research.

🎓Education:

Dr. Halligudra Guddappa holds a Ph.D. in Chemistry from Visvesvaraya Technological University (VTU), Muddenahalli, India (2017-2023), where he specialized in nanostructured metal/metal oxide-based catalysts for organic transformations. His research during this period contributed significantly to catalysis and nanomaterial applications. Prior to his Ph.D., he completed his M.Sc. in Analytical Chemistry (2012-2014) from Davangere University, where he graduated with distinction and was awarded a Gold Medal for securing the 1st rank in the university. During this time, he developed expertise in analytical techniques and material characterization methods. He pursued his B.Sc. in Physics, Chemistry, and Mathematics (2009-2012) from A.D.B First Grade College, Harapanahalli, affiliated with Davangere University, securing First Class with Distinction. Additionally, in 2020, he qualified the Karnataka State Eligibility Test (K-SET) in Chemistry, further demonstrating his strong academic and research foundation. His educational background has equipped him with a robust understanding of nanochemistry, catalysis, and analytical sciences.

🏢Work Experience:

Dr. Halligudra Guddappa is currently serving as an Assistant Professor and Research Faculty in the Department of Chemistry at ATMECE, Mysuru, India (August 2023 – Present). His responsibilities include teaching undergraduate students, mentoring research projects, publishing scientific papers, and securing research grants. Before this, he worked as a DST-INSPIRE Fellow at VTU, Muddenahalli (2017-2023), where he conducted groundbreaking research on nanostructured metal/metal oxide-based catalysts for organic reactions. As a research scholar, he was also involved in guiding B.Tech. and M.Tech. students, organizing workshops, and presenting at international conferences. His early research experience includes working as a Project Trainee at ITC R&D, Bengaluru (July-Nov 2014 & Jan-Feb 2014), where he focused on sample preparation techniques, residue analysis, and chromatographic methods for food safety applications. With a strong academic and industrial research background, he continues to make significant contributions to nanotechnology, green chemistry, and catalysis research.

🏅Awards: 

Dr. Halligudra Guddappa has received numerous prestigious awards in recognition of his academic excellence and research contributions. He was honored with the Best Flash Talk Presentation Award at IVaccT-2021, held at PDA College of Engineering, Kalaburagi. His research on nanomaterials and catalysis has earned him multiple Best Poster Presentation Awards, including at the TEQIP-III International Conferences MESSAGE-2019 and NESARA-2019 at VTU, Muddenahalli. He was selected as a Visiting Scholar under the Knowledge Exchange Program at Aryabhata Knowledge University, Bihar, further expanding his research collaborations. A major milestone in his career was being awarded the DST-INSPIRE Fellowship (2017) by the Department of Science and Technology, Government of India, which supported his doctoral research in nanochemistry and catalysis. In 2014, he received a Gold Medal for securing the 1st Rank in M.Sc. Chemistry at Davangere University. His role as a Master Trainer in Nanomaterials Synthesis and Device Fabrication at VTU highlights his expertise in advanced material science.

🔬Research Focus:

Dr. Halligudra Guddappa’s research focuses on nanochemistry, catalysis, and green chemistry, particularly the synthesis, characterization, and application of nanostructured metal/metal oxide-based catalysts for organic transformations. His work contributes to the development of sustainable and efficient catalytic systems, reducing the environmental impact of chemical processes. He is also actively engaged in energy storage applications, chemical sensing, and pollutant degradation using nanomaterials. His expertise extends to chromatographic techniques and food safety analysis, integrating analytical chemistry with nanoscience. Through his research, he has contributed to the advancement of green synthetic methodologies, novel catalyst design, and material science applications. His interdisciplinary approach bridges chemistry, material science, and environmental applications, making his research highly relevant for industry and academia. He is committed to publishing high-impact research, mentoring young scientists, and securing funding for innovative projects in nanotechnology, catalysis, and sustainable chemistry.

Publication Top Notes:

1. Silver nanoparticles synthesized using saponin extract of Simarouba glauca oil seed meal as effective, recoverable and reusable catalyst for reduction of organic dyes

Citations: 46

2. Pd(II) on Guanidine-Functionalized Fe₃O₄ Nanoparticles as an Efficient Heterogeneous Catalyst for Suzuki–Miyaura Cross-Coupling and Reduction of Nitroarenes

Citations: 38

3. Copper zinc tin sulfide and multi-walled carbon nanotubes nanocomposite for visible-light-driven photocatalytic applications

Citations: 30

4. Magnetic Fe₃O₄ supported MoS₂ nanoflowers as catalyst for the reduction of p-nitrophenol and organic dyes and as an electrochemical sensor for the detection of pharmaceutical compounds

Citations: 25

5. Silver nanoparticles anchored TiO₂ nanotubes prepared using saponin extract as heterogeneous and recyclable catalysts for reduction of dyes

Citations: 25

6. Study on the DC supply and charging effect on the growth of carbon nanotubes and their electrochemical properties

Citations: 9

7. Imidazole-centred cupric ions sensor: experimental validation, theoretical understanding, and zebrafish bioimaging

Citations: 8

8. Electrochemical investigation of Fe₃O₄/TNT/PANI composites for enhanced supercapacitor applications

Citations: 8

9. Cu(II) immobilized on guanidine functionalized Fe₃O₄ magnetic substrate as a heterogeneous catalyst for selective reduction of nitroarenes

Citations: 7

10. Magnetic photocatalytic systems (Book Chapter)

Citations: 6

11. Photocatalytic Systems by Design: Materials, Mechanisms and Applications (Book)

Citations: 4

12. Imidazole-Thiazole Based Dual Chemosensor for Cu²⁺ and Co²⁺ Ions with Identical Excitation Wavelength and Colorimetric TFA Sensing, Theoretical Validation

Citations: 1