Dr. Halligudra Guddappa | Materials Chemistry | Best Researcher Award

Dr. Halligudra Guddappa | Materials Chemistry | Best Researcher Award

Dr. Halligudra Guddappa | Materials Chemistry | Assistant Professor at ATME College of Engineering, India

Dr. Halligudra Guddappa is an accomplished Assistant Professor & Research Faculty in the Department of Chemistry at ATMECE, Mysuru, India. A gold medalist in Chemistry and a DST-INSPIRE Fellow, he has made significant contributions to nanochemistry, catalysis, and analytical chemistry. His expertise lies in nanostructured metal/metal oxide-based catalysts for organic transformations. With a strong background in teaching and research, he actively mentors students and secures research grants. Dr. Guddappa has presented at international conferences, winning awards for his outstanding research presentations. His industrial exposure at ITC R&D further enhances his applied scientific approach. Passionate about interdisciplinary research, he continues to contribute through peer-reviewed publications, book chapters, and patents. His dedication to innovative material development and sustainable chemistry makes him a recognized figure in the field.

Professional Profile :         

Google Scholar

Orcid

Scopus 

Summary of Suitability for Award:

Dr. Halligudra Guddappa is an exceptionally accomplished researcher in chemistry, specializing in nanochemistry, catalysis, and green chemistry. With a Ph.D. in Chemistry from VTU, Muddenahalli, and a DST-INSPIRE Fellowship (Government of India), his academic excellence and research contributions are highly commendable. His work in nanostructured metal/metal oxide catalysts has made a significant impact on sustainable catalysis, pollutant degradation, and energy storage applications.  Additionally, Dr. Guddappa has received several prestigious accolades, including the Gold Medal for securing the 1st Rank in M.Sc. Chemistry, multiple Best Poster Presentation Awards at international conferences, and the Best Flash Talk Presentation Award.  Dr. Halligudra Guddappa’s academic excellence, innovative research in nanotechnology and catalysis, numerous awards, and contributions to sustainable chemistry make him a strong contender for the “Best Researcher Award”. His ability to bridge fundamental research with practical applications, secure research funding, and mentor future scientists is truly commendable. Awarding him this recognition would not only honor his outstanding contributions but also motivate further advancements in nanochemistry and catalysis research.

🎓Education:

Dr. Halligudra Guddappa holds a Ph.D. in Chemistry from Visvesvaraya Technological University (VTU), Muddenahalli, India (2017-2023), where he specialized in nanostructured metal/metal oxide-based catalysts for organic transformations. His research during this period contributed significantly to catalysis and nanomaterial applications. Prior to his Ph.D., he completed his M.Sc. in Analytical Chemistry (2012-2014) from Davangere University, where he graduated with distinction and was awarded a Gold Medal for securing the 1st rank in the university. During this time, he developed expertise in analytical techniques and material characterization methods. He pursued his B.Sc. in Physics, Chemistry, and Mathematics (2009-2012) from A.D.B First Grade College, Harapanahalli, affiliated with Davangere University, securing First Class with Distinction. Additionally, in 2020, he qualified the Karnataka State Eligibility Test (K-SET) in Chemistry, further demonstrating his strong academic and research foundation. His educational background has equipped him with a robust understanding of nanochemistry, catalysis, and analytical sciences.

🏢Work Experience:

Dr. Halligudra Guddappa is currently serving as an Assistant Professor and Research Faculty in the Department of Chemistry at ATMECE, Mysuru, India (August 2023 – Present). His responsibilities include teaching undergraduate students, mentoring research projects, publishing scientific papers, and securing research grants. Before this, he worked as a DST-INSPIRE Fellow at VTU, Muddenahalli (2017-2023), where he conducted groundbreaking research on nanostructured metal/metal oxide-based catalysts for organic reactions. As a research scholar, he was also involved in guiding B.Tech. and M.Tech. students, organizing workshops, and presenting at international conferences. His early research experience includes working as a Project Trainee at ITC R&D, Bengaluru (July-Nov 2014 & Jan-Feb 2014), where he focused on sample preparation techniques, residue analysis, and chromatographic methods for food safety applications. With a strong academic and industrial research background, he continues to make significant contributions to nanotechnology, green chemistry, and catalysis research.

🏅Awards: 

Dr. Halligudra Guddappa has received numerous prestigious awards in recognition of his academic excellence and research contributions. He was honored with the Best Flash Talk Presentation Award at IVaccT-2021, held at PDA College of Engineering, Kalaburagi. His research on nanomaterials and catalysis has earned him multiple Best Poster Presentation Awards, including at the TEQIP-III International Conferences MESSAGE-2019 and NESARA-2019 at VTU, Muddenahalli. He was selected as a Visiting Scholar under the Knowledge Exchange Program at Aryabhata Knowledge University, Bihar, further expanding his research collaborations. A major milestone in his career was being awarded the DST-INSPIRE Fellowship (2017) by the Department of Science and Technology, Government of India, which supported his doctoral research in nanochemistry and catalysis. In 2014, he received a Gold Medal for securing the 1st Rank in M.Sc. Chemistry at Davangere University. His role as a Master Trainer in Nanomaterials Synthesis and Device Fabrication at VTU highlights his expertise in advanced material science.

🔬Research Focus:

Dr. Halligudra Guddappa’s research focuses on nanochemistry, catalysis, and green chemistry, particularly the synthesis, characterization, and application of nanostructured metal/metal oxide-based catalysts for organic transformations. His work contributes to the development of sustainable and efficient catalytic systems, reducing the environmental impact of chemical processes. He is also actively engaged in energy storage applications, chemical sensing, and pollutant degradation using nanomaterials. His expertise extends to chromatographic techniques and food safety analysis, integrating analytical chemistry with nanoscience. Through his research, he has contributed to the advancement of green synthetic methodologies, novel catalyst design, and material science applications. His interdisciplinary approach bridges chemistry, material science, and environmental applications, making his research highly relevant for industry and academia. He is committed to publishing high-impact research, mentoring young scientists, and securing funding for innovative projects in nanotechnology, catalysis, and sustainable chemistry.

Publication Top Notes:

1. Silver nanoparticles synthesized using saponin extract of Simarouba glauca oil seed meal as effective, recoverable and reusable catalyst for reduction of organic dyes

Citations: 46

2. Pd(II) on Guanidine-Functionalized Fe₃O₄ Nanoparticles as an Efficient Heterogeneous Catalyst for Suzuki–Miyaura Cross-Coupling and Reduction of Nitroarenes

Citations: 38

3. Copper zinc tin sulfide and multi-walled carbon nanotubes nanocomposite for visible-light-driven photocatalytic applications

Citations: 30

4. Magnetic Fe₃O₄ supported MoS₂ nanoflowers as catalyst for the reduction of p-nitrophenol and organic dyes and as an electrochemical sensor for the detection of pharmaceutical compounds

Citations: 25

5. Silver nanoparticles anchored TiO₂ nanotubes prepared using saponin extract as heterogeneous and recyclable catalysts for reduction of dyes

Citations: 25

6. Study on the DC supply and charging effect on the growth of carbon nanotubes and their electrochemical properties

Citations: 9

7. Imidazole-centred cupric ions sensor: experimental validation, theoretical understanding, and zebrafish bioimaging

Citations: 8

8. Electrochemical investigation of Fe₃O₄/TNT/PANI composites for enhanced supercapacitor applications

Citations: 8

9. Cu(II) immobilized on guanidine functionalized Fe₃O₄ magnetic substrate as a heterogeneous catalyst for selective reduction of nitroarenes

Citations: 7

10. Magnetic photocatalytic systems (Book Chapter)

Citations: 6

11. Photocatalytic Systems by Design: Materials, Mechanisms and Applications (Book)

Citations: 4

12. Imidazole-Thiazole Based Dual Chemosensor for Cu²⁺ and Co²⁺ Ions with Identical Excitation Wavelength and Colorimetric TFA Sensing, Theoretical Validation

Citations: 1

Assoc. Prof. Dr. Mohamed Ebrahim | Materials Chemistry | Best Researcher Award

Assoc. Prof. Dr. Mohamed Ebrahim | Materials Chemistry | Best Researcher Award

Assoc. Prof. Dr. Mohamed Ebrahim | Materials Chemistry |Solid State Physics research at National Research Center, Egypt

M. R. Ebrahim, born in Giza, Egypt, is a distinguished researcher in solid-state physics at the National Research Centre (NRC), Egypt. He obtained his Ph.D. in Experimental Physics from Mansoura University, specializing in the synthesis and preparation of Al/Ru bi-layers. His expertise lies in severe plastic deformation (SPD) and surface mechanical alloying (SMA) of aluminum. He has significantly contributed to materials science with innovations such as Surface Mechanical Attrition Treatment (SMAT), for which he holds a patent. His research has advanced aluminum composites, corrosion resistance, and electrochemical behavior, leading to applications in supercapacitors, coatings, and energy storage devices. He has authored numerous publications in high-impact journals and collaborates internationally in materials engineering. His work integrates theoretical physics with experimental applications, contributing significantly to nanomaterials, electrochemistry, and advanced materials.

Professional Profile :         

Orcid

Scope  

Summary of Suitability for Award:

M. R. Ebrahim is a highly accomplished researcher specializing in solid-state physics, severe plastic deformation (SPD), and surface mechanical alloying (SMA). His groundbreaking innovations, such as Surface Mechanical Attrition Treatment (SMAT), have significantly advanced materials science, particularly in supercapacitor development, corrosion resistance, and electrochemical behavior. His patents, numerous high-impact publications, and contributions to industrial and academic research demonstrate his expertise and leadership in his field. He has successfully bridged the gap between theoretical physics and applied materials engineering, leading to practical advancements in nanomaterials and surface engineering. His active involvement in research collaborations, peer reviewing, and international conferences further strengthens his candidacy for this prestigious award. M. R. Ebrahim’s research excellence, technological innovations, and impactful contributions to materials science make him a highly deserving candidate for the “Best Researcher Award.” His patents, publications, and pioneering work in surface engineering and electrochemistry showcase his ability to drive scientific progress and innovation. Recognizing his achievements would honor his dedication to advancing materials science and inspire further groundbreaking research in the field.

🎓Education:

M. R. Ebrahim pursued his academic journey in physics, starting with a B.Sc. in Physics from Helwan University, Egypt. He furthered his studies with a Ph.D. in Experimental Physics from Mansoura University, focusing on synthesis and preparation of Al/Ru bi-layers. His doctoral research emphasized surface modifications, mechanical alloying, and electrochemical properties of aluminum-based materials. His educational background laid a strong foundation for his work in severe plastic deformation (SPD), surface engineering, and supercapacitor technology. His studies encompassed various aspects of solid-state physics, nanomaterials, and electrochemical behavior. With extensive laboratory experience, he gained expertise in materials characterization, thin-film coatings, and corrosion-resistant materials. His education has driven his innovations in advanced materials processing, mechanical attrition, and novel composite development, enabling him to make significant contributions to materials science and industrial applications.

🏢Work Experience:

M. R. Ebrahim has been a Researcher in Solid-State Physics at NRC, Egypt, since 2010, working extensively on surface mechanical alloying, corrosion resistance, and severe plastic deformation of aluminum-based materials. His research focuses on enhancing the mechanical, electrical, and electrochemical properties of metals for various applications. He pioneered SMAT technology for material surface modifications, significantly improving supercapacitor performance, dielectric properties, and composite coatings. His collaborations extend internationally, engaging in projects related to nano-coatings, energy storage, and metal reinforcement techniques. He has contributed to industrial advancements by integrating electrochemical engineering with material science, leading to innovative solutions for corrosion-resistant and high-performance aluminum materials. He actively publishes, reviews scientific papers, and participates in global conferences, sharing his expertise in materials modification, nanostructured composites, and energy applications. His work bridges the gap between fundamental physics and practical material applications, driving progress in advanced alloy engineering.

🏅Awards: 

M. R. Ebrahim has received several prestigious recognitions for his outstanding contributions to solid-state physics, surface mechanical alloying, and severe plastic deformation. He has been acknowledged for his innovative patents, including the “Machine for Surface Mechanical Attrition Treatment (SMAT)” and “Supercapacitors Construction from Fiberglass through Surface Mechanical Alloying.” These innovations were recognized by the Egyptian Scientific Research Academy, highlighting their significance in advancing materials science and energy storage technologies. His research excellence has also earned him invitations to international conferences, peer-reviewing roles in high-impact journals, and collaborations with leading institutions. His contributions to corrosion resistance, electrochemical behavior, and composite materials have been widely cited, further solidifying his reputation as a leading researcher in his field. His dedication to applied physics and engineering continues to influence modern materials science, making him a strong contender for prestigious scientific awards and fellowships.

🔬Research Focus:

M. R. Ebrahim’s research is centered on solid-state physics, surface engineering, and severe plastic deformation (SPD) to enhance material properties. His work on surface mechanical alloying (SMA) and surface mechanical attrition treatment (SMAT) has led to significant advancements in corrosion resistance, mechanical strength, and electrical properties of aluminum-based materials. A key aspect of his research is the development of supercapacitors using fiberglass and aluminum composites, which has implications for energy storage and electronic applications. His studies also explore electrochemical behavior, dielectric permittivity, and microstructural evolution in materials subjected to mechanical treatments. By integrating experimental physics with material science, he has successfully introduced innovative methodologies to modify and enhance material surfaces for industrial and technological applications. His contributions are particularly impactful in nanomaterials, thin films, and composite materials, where his work continues to drive new advancements in materials engineering and applied physics.

Publication Top Notes:

  • “Electrical properties of Al-Si surface composites through surface mechanical alloying on severe plastic deformed Al substrates”

  • “Mechanical treatment of aluminum plate surfaces for improvements of capacitance and dielectric permittivity”

  • “Corrosion behavior of aluminum-Fiber Glass composite fabricated through surface mechanical alloying in alkaline media”

  • “Electrochemical behavior of Al₂O₃/Al composite coated Al electrodes through surface mechanical alloying in alkaline media”

  • “Terahertz acoustic phonon detection from a compact surface layer of spherical nanoparticles powder mixture of aluminum, alumina and multi-walled carbon nanotube”

  • “Improving corrosion resistance of Al through severe plastic deformation 1-under free condition”

  • “Improving corrosion resistance of Al through severe plastic deformation 2-under accelerated condition”

  • “Spectroscopic Analysis of Severe Plastically Deformed Raw Al Rolled Sheet”

  • “Microstructure and Microhardness Evolutions of High Fe Containing Near-Eutectic Al-Si Rapidly Solidified Alloy”

  • “Microstructure and microhardness evolution of melt-spun Al-Si-Cu alloy”

  • “Study of Phase Evolution in Sputtered Al/Ru Bi-layers Nanocrystalline Thin Films”

 

Assoc. Prof. Dr. Olcay Gençyılmaz | Materials Chemistry | Best Researcher Award

Assoc. Prof. Dr. Olcay Gençyılmaz | Materials Chemistry | Best Researcher Award

Assoc. Prof. Dr. Olcay Gençyılmaz , Çankırı Karatekin University, Turkey

Olcay Gençyılmaz is a prominent academic and researcher at Çankırı Karatekin University, specializing in materials science and nanotechnology. With expertise in thin film production, electrochemical applications, and photovoltaic systems, She has led multiple national research projects and contributed to the development of advanced materials for various applications. Throughout his career, She has worked on numerous interdisciplinary projects, exploring the effects of nanomaterials on environmental sustainability, energy production, and health. As a dedicated educator, he actively engages in mentoring graduate and doctoral students, guiding them in their research endeavors. His work is widely recognized in the scientific community, and he has published extensively in international journals.

Professional Profile:

Scopus  

Summary of Suitability for Award:

Olcay Gençyılmaz is highly qualified for the “Best Researcher Award” due to his outstanding contributions in the field of materials science and nanotechnology. His extensive research on thin films, nanomaterials, and their applications in energy systems, environmental sustainability, and healthcare has positioned him as a leading figure in his field. His work on the development of innovative materials for photovoltaics, electrochemical energy storage, and environmental remediation demonstrates his commitment to solving global challenges. His academic achievements, leadership in research projects, and numerous high-quality publications underscore his excellence in research and innovation, which are key criteria for this prestigious recognition.

🎓Education:

Olcay Gençyılmaz holds a Bachelor’s degree in Physics and a Master’s degree in Materials Science. He earned his Ph.D. in Nanotechnology from Çankırı Karatekin University, Turkey. His educational journey was marked by a focus on developing thin films for applications in energy and electronics. She participated in numerous academic workshops and research collaborations, enhancing his understanding of advanced materials and their characterization. Olcay’s education laid the foundation for his career, enabling him to contribute to the scientific community with cutting-edge research.

🏢Work Experience:

Olcay Gençyılmaz’s professional experience spans both academia and research. As an Associate Professor at Çankırı Karatekin University, She has supervised numerous research projects and mentored graduate students. His academic expertise includes thin film characterization, nanomaterials, and energy systems. Olcay has been involved in multiple national research projects related to photovoltaic systems, electrochemical capacitors, and thin film production techniques like SILAR and spray pyrolysis. She has served as a project leader and executive board member, contributing to advancements in materials science and nanotechnology.

🏅Awards: 

Olcay Gençyılmaz has received several prestigious awards throughout his career. Notably, She was recognized by TÜBİTAK for his work on the synthesis and characterization of CuO films. His research on thin films, particularly for solar cells and energy storage, She has earned him national recognition. Olcay’s contributions to material science and nanotechnology have been pivotal in advancing these fields. His passion for research and innovation continues to inspire students and colleagues alike.

🔬Research Focus:

Olcay Gençyılmaz’s research primarily focuses on materials science, particularly thin films and nanomaterials. His work explores the production, characterization, and application of thin films for various technological fields such as photovoltaics, electrochemical energy storage, and environmental remediation. Olcay is also interested in the synthesis of nanoparticles for antibacterial and photocatalytic applications. His innovative research aims to develop sustainable materials that can address energy and environmental challenges.

Publication Top Notes:

1. Analyzing antimicrobial activity of ZnO/FTO, Sn–Cu-doped ZnO/FTO thin films: Production and characterizations
  • Citations: 1
2. Comparison of high antioxidant ZnO NPs produced from different fungi as alternative biomaterials
3. Comparative evaluation of zinc oxide nanoparticles (ZnONPs): Photocatalysis, antibacterial, toxicity and genotoxicity
  • Citations: 1
4. Spray pyrolysis–derived V₂O₅ thin films as an alternative electrochromic layer for electrochromic devices
5. Binary ZnS–ZnO films as an alternative buffer layer for solar cell applications
  • Citations: 2