Prof Dr. Mohamed attia | Analytical Chemistry | Best Researcher Award
Professor at Ain Shams University, Egypt
Prof. Dr. Mohamed Said Attia is a leading analytical chemist and professor at Ain Shams University, where he heads a research group focused on the early diagnosis of diseases using nano-optical sensors. He is also the Director of the Chemical and Biochemical Studies and Consultations Unit. His academic career, marked by a PhD from Ain Shams University and a professorship awarded in 2017, underscores his significant contributions to the fields of analytical chemistry and nanotechnology. His innovative research and extensive publications highlight his impact on cancer diagnosis and environmental monitoring.
Author Metrics
Prof. Attia has achieved an h-index of 29, reflecting his substantial academic impact through both the volume and citation of his work. His prolific output includes 112 papers and 10 books, indicating his extensive influence in analytical chemistry and nanotechnology. These metrics underscore his prominence and contribution to advancing scientific knowledge in his field.
- Citations: 1,534 citations from 824 documents
- Documents: 104
- h-index: 28
Education
Prof. Attia earned his PhD in analytical chemistry from Ain Shams University in 2006. This advanced degree provided a solid foundation for his subsequent research and academic career, leading to his elevation to a full professorship in 2017. His educational background has been crucial in shaping his expertise and achievements in analytical chemistry.
Research Focus
Prof. Attia’s research primarily involves developing and applying nano-optical sensors for early disease diagnosis, with a particular focus on cancer detection. His work also encompasses analytical photochemistry, nano-photochemistry, and the creation of nano photocatalysts. This focus aims to improve diagnostic techniques and environmental monitoring through advanced sensor technologies.
Professional Journey
Prof. Attia’s professional trajectory includes significant roles in research and academia. He began his career as a lecturer and progressed to a full professor by 2017. Throughout his career, he has led impactful research projects, directed the Chemical and Biochemical Studies and Consultations Unit, and contributed to practical applications in medicine and industry, establishing himself as a leading figure in his field.
Honors & Awards
Prof. Attia has received several prestigious awards recognizing his research contributions. Notably, his project on the green synthesis of magnetic iron oxide nanoparticles won the “2019 Green Chemistry for Life Science” award from PhosAgro/UNESCO/IUPAC. This accolade highlights his outstanding work in green chemistry and his global recognition for advancing scientific and environmental solutions.
Publications Noted & Contributions
Prof. Attia has published extensively, including 10 books and over 112 papers in peer-reviewed journals. His work covers a broad range of topics such as nano-optical sensors and analytical photochemistry. His publications are well-cited and have significantly contributed to the advancement of knowledge in disease diagnostics and environmental applications.
“Polymer-Based Terbium Complex as a Fluorescent Probe for Cancer Antigen 125 Detection: A Promising Tool for Early Diagnosis of Ovarian Cancer”
- Journal: ACS Omega
- Publication Date: June 11, 2024
- DOI: 10.1021/acsomega.4c01814
- Contributors: Magda M. Mohamed, Hisham Gamal, Akram El-Didamony, Ahmed O. Youssef, Esraa Elshahat, Ekram H. Mohamed, Mohamed S. Attia
“Highly selective optical sensor N/S-doped carbon quantum dots (CQDs) for the assessment of human chorionic gonadotropin β-hCG in the serum of breast and prostate cancer patients”
- Journal: RSC Advances
- Publication Date: 2023
- DOI: 10.1039/D3RA01570J
- Contributors: Yasmeen M. AlZahrani, Salha Alharthi, Hind A. AlGhamdi, A. O. Youssef, Shahenda S. Ahmed, Ekram H. Mohamed, Safwat A. Mahmoud, Mohamed S. Attia
“Novel sensor for the determination of CA 15-3 in serum of breast cancer patients based on Fe-gallic acid complex doped in modified cellulose polymer thin films”
- Journal: RSC Advances
- Publication Date: 2023
- DOI: 10.1039/D3RA90086J
- WOSUID: WOS:001156979600001
- Contributors: Hind A. AlGhamdi, Yasmeen M. AlZahrani, Salha Alharthi, Mohamed S. Mohy-Eldin, Ekram H. Mohamed, Sheta M. Sheta, Said M. El-Sheikh, Safwat A. Mahmoud, Mohamed S. Attia
“Novel sensor for the determination of CA 15-3 in serum of breast cancer patients based on Fe–gallic acid complex doped in modified cellulose polymer thin films”
- Journal: RSC Advances
- Publication Date: 2023
- DOI: 10.1039/D3RA02495D
- Contributors: Hind A. AlGhamdi, Yasmeen M. AlZahrani, Salha Alharthi, Mohamed S. Mohy-Eldin, Ekram H. Mohamed, Safwat A. Mahmoud, Mohamed S. Attia
“SiO2/Zn0.4Co0.6Fe2O4 aerogel: an efficient and reusable superparamagnetic adsorbent for oily water remediation”
- Journal: RSC Advances
- Publication Date: 2023
- DOI: 10.1039/D3RA03570K
- Contributors: Fagr A. Shehata, Amer S. El-Kalliny, Mohamed S. Attia, Tarek A. Gad-Allah
Research Timeline
Prof. Attia’s research timeline highlights his significant contributions across various projects. From 2003 to 2005, he worked on the AQUACAT Project, which focused on photo disinfection of water. Between 2006 and 2008, he conducted research on photovoltaics utilizing Polymer/Quantum Dot Composites. The POWESOL Project from 2007 to 2009 explored mechanical power generation using solar energy. In 2015, his research centered on the early diagnosis of ovarian cancer through nano-optical sensors. His 2019 project, recognized with an award, involved the green synthesis of magnetic nanoparticles. Currently, in 2023, he is engaged in ongoing research on biosensors for detecting MRSA in dairy products.
Collaborations and Projects
Prof. Attia’s collaborations span several high-impact international projects. The AQUACAT Project, in partnership with European and North African teams, focused on water photo disinfection. The POWESOL Project aimed at advancing solar thermodynamic power generation. His work with King Abdul-Aziz University (KAU) involved pioneering early cancer diagnosis using nano-optical sensors. Additionally, the PhosAgro/UNESCO/IUPAC Grant supported his research on green chemistry and nanoparticle synthesis. These collaborations underscore his dedication to advancing scientific knowledge through global partnerships and innovative research.
Strengths of the Best Researcher Award
- Innovative Research Focus: Prof. Dr. Mohamed Attia’s award-winning research on nano-optical sensors for early disease diagnosis, particularly cancer detection, showcases cutting-edge innovation. This focus on developing advanced diagnostic tools demonstrates his commitment to addressing critical healthcare challenges and advancing the field of analytical chemistry.
- Global Recognition and Impact: The recognition through the “2019 Green Chemistry for Life Science” award highlights Prof. Attia’s global impact on green chemistry. His work on green synthesis of magnetic iron oxide nanoparticles is acknowledged internationally, reflecting the significant contributions he has made to both scientific and environmental solutions.
- Extensive Publications and Citations: Prof. Attia’s impressive record of 112 papers and 10 books, coupled with an h-index of 29, signifies his substantial influence in the field. The high citation count of 1,534 further underscores the relevance and impact of his research.
- Diverse Research Projects: The breadth of Prof. Attia’s research, including projects on photovoltaics, mechanical power generation, and biosensors, illustrates his versatility and ability to tackle various scientific challenges. This diversity enhances his reputation as a leading researcher in analytical chemistry and nanotechnology.
- Strong Collaborative Network: His involvement in international projects and collaborations, such as AQUACAT and POWESOL, showcases his ability to work effectively with global teams. These collaborations not only enhance the scope of his research but also contribute to advancements in scientific knowledge through cross-border partnerships.
Areas for Improvement
- Publication Consistency: While Prof. Attia has a substantial number of publications, maintaining consistency in publication frequency and addressing potential gaps in research themes could further strengthen his academic profile. This might involve exploring emerging topics or gaps in current research.
- Expansion of Research Applications: While his current focus is on cancer diagnosis and environmental monitoring, expanding research applications to other critical areas, such as infectious diseases or agricultural analytics, could diversify the impact of his work and open new avenues for innovation.
- Enhanced Outreach and Dissemination: Increasing efforts in outreach and dissemination of research findings, particularly through public engagement or media, could enhance the visibility and societal impact of his work. This could involve organizing public lectures, workshops, or participating in science communication initiatives.
- Interdisciplinary Collaboration: Although Prof. Attia has collaborated internationally, further interdisciplinary collaborations with fields such as biomedical engineering, data science, or artificial intelligence could provide new insights and enhance the applicability of his research in different contexts.
- Grant Acquisition and Funding: Securing additional grants and funding for new research projects can help support and expand ongoing work. Exploring new funding opportunities and fostering relationships with potential sponsors or industry partners could bolster research capabilities and resources.
Conclusion
Prof. Dr. Mohamed Attia’s recognition as a leading researcher in analytical chemistry is well-deserved, reflecting his innovative research, global impact, and extensive contributions to the field. His award-winning work, notable publications, and collaborative projects underscore his prominence in advancing disease diagnosis and environmental solutions. To further enhance his research impact, focusing on consistent publication, expanding research applications, improving outreach, fostering interdisciplinary collaborations, and securing additional funding could provide valuable opportunities for growth and continued excellence. Prof. Attia’s ongoing dedication and achievements position him as a pivotal figure in his field, with a promising trajectory for future advancements.