Prof. Mansoor Anbia | Analytical Chemistry | Best Researcher Award

Prof. Mansoor Anbia | Analytical Chemistry | Best Researcher Award

Prof. Mansoor Anbia ,  Analytical Chemistry , Academician/Research Scholar at Iran university od science and technology , Iran

Prof. Mansoor Anbia is a distinguished Professor of Analytical Chemistry at the Iran University of Science and Technology. He specializes in the synthesis and application of nanomaterials, particularly for environmental monitoring and catalysis. With a Ph.D. in Analytical Chemistry, Prof. Anbia has led 365 research projects, published 249 articles in reputed journals, authored five books, and contributed significantly to industrial consultancy with over 70 projects. His editorial appointments include the Journal of Chemical Reviews and the Asian Journal of Nanoscience and Materials. As president of international chemistry congresses and head of various national committees, he bridges academia and industry with a commitment to applied innovation. Prof. Anbia’s pioneering work on nanostructured materials has gained global recognition, earning him an h-index of 38. Through his research and leadership, he continues to advance scientific understanding and real-world application in nanochemistry and analytical science.

Professional Profile : 

Google Scholar

Orcid

Scopus 

Summary of Suitability for Award:

Prof. Mansoor Anbia stands out as an exceptionally qualified candidate for the Best Researcher Award due to his prolific academic contributions, innovative research, and leadership in scientific and industrial domains. With 249 publications in high-impact journals, 365 completed or ongoing research projects, and five authored books, his scholarly output is not only vast but also highly influential, evidenced by his citation index (h-index) of 38.  Additionally, Prof. Anbia has bridged academia and industry through 71 consultancy projects and multiple prestigious appointments, including editorial board roles, presidency of international congresses, and national scientific advisory positions. His consistent leadership in national science policy, industrial applications, and interdisciplinary collaborations positions him as a role model for emerging researchers. Prof. Mansoor Anbia is highly suitable for the “Best Researcher Award”. His pioneering work in nanochemistry and analytical science, combined with extensive scholarly output and industrial impact, exemplifies the highest standards of research excellence. He fulfills all major criteria—productivity, innovation, societal relevance, and academic leadership—and thus represents an ideal recipient of this distinguished honor.

🎓Education:

Prof. Mansoor Anbia holds a Ph.D. in Analytical Chemistry with a specialization in nanomaterials. During his doctoral studies, he conducted advanced research on nanostructures and their applications in analytical techniques. He worked closely with a renowned expert in nanotechnology, gaining interdisciplinary expertise across materials science, instrumental analysis, and catalysis. His academic journey focused on developing methods for environmental monitoring, pollutant removal, and industrial process optimization. As a doctoral researcher, he published extensively and served as first author in many high-impact journals. His academic training provided a robust foundation in research design, experimental techniques, and scientific communication. His education also equipped him with advanced skills in synthesis, characterization, and application of porous nanomaterials, shaping his long-term research directions. Prof. Anbia’s academic background remains integral to his ongoing success as a scholar, mentor, and innovator in the field of nanoscience and analytical chemistry.

🏢Work Experience:

Prof. Mansoor Anbia brings decades of experience in academia, industrial consultancy, and scientific leadership. As a Professor of Analytical Chemistry at the Iran University of Science and Technology, he has supervised numerous Ph.D. scholars and led 365 completed or ongoing research projects. With 71 consultancy and industrial collaborations, he has contributed extensively to environmental and industrial applications of nanomaterials. His responsibilities span teaching, research, innovation, and international cooperation. Prof. Anbia also serves in leadership roles: Director of the Oil Industry Relations Office, Head of the Center for Silicon Chemistry Technology, and Chair of national research committees. His editorial involvement and presidency of international congresses further reflect his global engagement. Across his career, he has integrated scientific rigor with practical innovation, contributing significantly to environmental remediation, catalysis, and industrial processes. His career exemplifies a synergy of academic excellence and applied science.

🏅Awards: 

Prof. Mansoor Anbia’s exceptional career has earned him several accolades and prestigious appointments. He is the President of the International Congress of Chemistry and Nanochemistry, reflecting his global stature. He has been a key member of multiple national scientific boards including the Specialized Commission on Basic Sciences, and the Iranian Water and Wastewater Industry Book Review Committee. Prof. Anbia has played a pivotal role in government and industrial policy through his position on the Research Committee of the Iranian Water Resources Management Technology Company. As Head of the Center for Coordination of Silicon and Organosilicon Chemistry Technology, his contributions are widely acknowledged in both academic and industrial circles. These honors affirm his impact on science policy, education, and real-world problem solving. Through his dedication to scientific excellence and interdisciplinary innovation, he continues to influence the future of analytical chemistry and nanotechnology.

🔬Research Focus:

Prof. Mansoor Anbia’s research centers on the synthesis and application of nanostructured and nanoporous materials for environmental and industrial uses. He focuses on developing novel adsorbents and catalysts with enhanced efficiency for the removal of organic and inorganic pollutants from industrial effluents. His work also targets energy and environmental sustainability by engineering nano-based systems applicable in water treatment and industrial plants. He integrates advanced analytical techniques for characterization and performance evaluation of materials. Prof. Anbia’s studies span method development, instrumental analysis, and real-world application, particularly in the oil and petrochemical sectors. His collaborative efforts in interdisciplinary projects strengthen the link between chemistry, environmental science, and industrial engineering. Through innovations in functionalized nanomaterials, his research aims to solve pressing environmental issues while advancing the field of green and analytical chemistry.

Publication Top Notes:

1. Superhydrophobic magnetic melamine sponge modified by flowerlike ZnO and stearic acid using dip coating method for oil and water separation

2. Investigation of sol-gel derived organic-inorganic hybrid coatings based on commercial epoxy resin for improved corrosion resistance of 304 stainless steel

Citations: 1

3. Kinetic and isotherm studies of Cr(VI) adsorption from aqueous media by using a synthetic chitosan-allophane nanocomposite

4. Synergetic effect of heteroatoms doping and functional groups of graphene-chitosan magnetic nanocomposite on enhancement of heavy metal sorption

Citations: 1

5. Chitosan and carboxymethyl cellulose coated on NH₂-UiO-66 for levofloxacin delivery: A comparative study

6. MIL-101(Fe)- and MIL-101(Fe)-NH₂-loaded thin film nanofiltration membranes for removal of fluoxetine hydrochloride from pharmaceutical wastewater

Citations: 1

7. Investigating the catalytic performance of polyoxometalate immobilized on magnetic chitosan in oxidative desulfurization

Citations: 3

8. Modification of melamine and polyurethane sponges with vinyl triethoxysilane-graphene nanocomposite as superhydrophobic absorbents for oil-water separation

9. Machine learning-based prediction and experimental validation of Cr(VI) adsorption capacity of chitosan-based composites

10. Green synthesis of magnetic graphene-like biochar with oxygen vacancies for efficient adsorption and degradation of emerging antivirals from water

Citations: 4

 

Mohamed attia | Analytical Chemistry | Best Researcher Award

Prof Dr. Mohamed attia | Analytical Chemistry | Best Researcher Award

 Professor at Ain Shams University, Egypt

Prof. Dr. Mohamed Said Attia is a leading analytical chemist and professor at Ain Shams University, where he heads a research group focused on the early diagnosis of diseases using nano-optical sensors. He is also the Director of the Chemical and Biochemical Studies and Consultations Unit. His academic career, marked by a PhD from Ain Shams University and a professorship awarded in 2017, underscores his significant contributions to the fields of analytical chemistry and nanotechnology. His innovative research and extensive publications highlight his impact on cancer diagnosis and environmental monitoring.

Author Metrics

Scopus Profile

ORCID Profile

Google Scholar Profile

Prof. Attia has achieved an h-index of 29, reflecting his substantial academic impact through both the volume and citation of his work. His prolific output includes 112 papers and 10 books, indicating his extensive influence in analytical chemistry and nanotechnology. These metrics underscore his prominence and contribution to advancing scientific knowledge in his field.

  • Citations: 1,534 citations from 824 documents
  • Documents: 104
  • h-index: 28

Education

Prof. Attia earned his PhD in analytical chemistry from Ain Shams University in 2006. This advanced degree provided a solid foundation for his subsequent research and academic career, leading to his elevation to a full professorship in 2017. His educational background has been crucial in shaping his expertise and achievements in analytical chemistry.

Research Focus

Prof. Attia’s research primarily involves developing and applying nano-optical sensors for early disease diagnosis, with a particular focus on cancer detection. His work also encompasses analytical photochemistry, nano-photochemistry, and the creation of nano photocatalysts. This focus aims to improve diagnostic techniques and environmental monitoring through advanced sensor technologies.

Professional Journey

Prof. Attia’s professional trajectory includes significant roles in research and academia. He began his career as a lecturer and progressed to a full professor by 2017. Throughout his career, he has led impactful research projects, directed the Chemical and Biochemical Studies and Consultations Unit, and contributed to practical applications in medicine and industry, establishing himself as a leading figure in his field.

Honors & Awards

Prof. Attia has received several prestigious awards recognizing his research contributions. Notably, his project on the green synthesis of magnetic iron oxide nanoparticles won the “2019 Green Chemistry for Life Science” award from PhosAgro/UNESCO/IUPAC. This accolade highlights his outstanding work in green chemistry and his global recognition for advancing scientific and environmental solutions.

Publications Noted & Contributions

Prof. Attia has published extensively, including 10 books and over 112 papers in peer-reviewed journals. His work covers a broad range of topics such as nano-optical sensors and analytical photochemistry. His publications are well-cited and have significantly contributed to the advancement of knowledge in disease diagnostics and environmental applications.

“Polymer-Based Terbium Complex as a Fluorescent Probe for Cancer Antigen 125 Detection: A Promising Tool for Early Diagnosis of Ovarian Cancer”

  • Journal: ACS Omega
  • Publication Date: June 11, 2024
  • DOI: 10.1021/acsomega.4c01814
  • Contributors: Magda M. Mohamed, Hisham Gamal, Akram El-Didamony, Ahmed O. Youssef, Esraa Elshahat, Ekram H. Mohamed, Mohamed S. Attia

“Highly selective optical sensor N/S-doped carbon quantum dots (CQDs) for the assessment of human chorionic gonadotropin β-hCG in the serum of breast and prostate cancer patients”

  • Journal: RSC Advances
  • Publication Date: 2023
  • DOI: 10.1039/D3RA01570J
  • Contributors: Yasmeen M. AlZahrani, Salha Alharthi, Hind A. AlGhamdi, A. O. Youssef, Shahenda S. Ahmed, Ekram H. Mohamed, Safwat A. Mahmoud, Mohamed S. Attia

“Novel sensor for the determination of CA 15-3 in serum of breast cancer patients based on Fe-gallic acid complex doped in modified cellulose polymer thin films”

  • Journal: RSC Advances
  • Publication Date: 2023
  • DOI: 10.1039/D3RA90086J
  • WOSUID: WOS:001156979600001
  • Contributors: Hind A. AlGhamdi, Yasmeen M. AlZahrani, Salha Alharthi, Mohamed S. Mohy-Eldin, Ekram H. Mohamed, Sheta M. Sheta, Said M. El-Sheikh, Safwat A. Mahmoud, Mohamed S. Attia

“Novel sensor for the determination of CA 15-3 in serum of breast cancer patients based on Fe–gallic acid complex doped in modified cellulose polymer thin films”

  • Journal: RSC Advances
  • Publication Date: 2023
  • DOI: 10.1039/D3RA02495D
  • Contributors: Hind A. AlGhamdi, Yasmeen M. AlZahrani, Salha Alharthi, Mohamed S. Mohy-Eldin, Ekram H. Mohamed, Safwat A. Mahmoud, Mohamed S. Attia

“SiO2/Zn0.4Co0.6Fe2O4 aerogel: an efficient and reusable superparamagnetic adsorbent for oily water remediation”

  • Journal: RSC Advances
  • Publication Date: 2023
  • DOI: 10.1039/D3RA03570K
  • Contributors: Fagr A. Shehata, Amer S. El-Kalliny, Mohamed S. Attia, Tarek A. Gad-Allah

Research Timeline

Prof. Attia’s research timeline highlights his significant contributions across various projects. From 2003 to 2005, he worked on the AQUACAT Project, which focused on photo disinfection of water. Between 2006 and 2008, he conducted research on photovoltaics utilizing Polymer/Quantum Dot Composites. The POWESOL Project from 2007 to 2009 explored mechanical power generation using solar energy. In 2015, his research centered on the early diagnosis of ovarian cancer through nano-optical sensors. His 2019 project, recognized with an award, involved the green synthesis of magnetic nanoparticles. Currently, in 2023, he is engaged in ongoing research on biosensors for detecting MRSA in dairy products.

Collaborations and Projects

Prof. Attia’s collaborations span several high-impact international projects. The AQUACAT Project, in partnership with European and North African teams, focused on water photo disinfection. The POWESOL Project aimed at advancing solar thermodynamic power generation. His work with King Abdul-Aziz University (KAU) involved pioneering early cancer diagnosis using nano-optical sensors. Additionally, the PhosAgro/UNESCO/IUPAC Grant supported his research on green chemistry and nanoparticle synthesis. These collaborations underscore his dedication to advancing scientific knowledge through global partnerships and innovative research.

Strengths of the Best Researcher Award

  1. Innovative Research Focus: Prof. Dr. Mohamed Attia’s award-winning research on nano-optical sensors for early disease diagnosis, particularly cancer detection, showcases cutting-edge innovation. This focus on developing advanced diagnostic tools demonstrates his commitment to addressing critical healthcare challenges and advancing the field of analytical chemistry.
  2. Global Recognition and Impact: The recognition through the “2019 Green Chemistry for Life Science” award highlights Prof. Attia’s global impact on green chemistry. His work on green synthesis of magnetic iron oxide nanoparticles is acknowledged internationally, reflecting the significant contributions he has made to both scientific and environmental solutions.
  3. Extensive Publications and Citations: Prof. Attia’s impressive record of 112 papers and 10 books, coupled with an h-index of 29, signifies his substantial influence in the field. The high citation count of 1,534 further underscores the relevance and impact of his research.
  4. Diverse Research Projects: The breadth of Prof. Attia’s research, including projects on photovoltaics, mechanical power generation, and biosensors, illustrates his versatility and ability to tackle various scientific challenges. This diversity enhances his reputation as a leading researcher in analytical chemistry and nanotechnology.
  5. Strong Collaborative Network: His involvement in international projects and collaborations, such as AQUACAT and POWESOL, showcases his ability to work effectively with global teams. These collaborations not only enhance the scope of his research but also contribute to advancements in scientific knowledge through cross-border partnerships.

Areas for Improvement

  1. Publication Consistency: While Prof. Attia has a substantial number of publications, maintaining consistency in publication frequency and addressing potential gaps in research themes could further strengthen his academic profile. This might involve exploring emerging topics or gaps in current research.
  2. Expansion of Research Applications: While his current focus is on cancer diagnosis and environmental monitoring, expanding research applications to other critical areas, such as infectious diseases or agricultural analytics, could diversify the impact of his work and open new avenues for innovation.
  3. Enhanced Outreach and Dissemination: Increasing efforts in outreach and dissemination of research findings, particularly through public engagement or media, could enhance the visibility and societal impact of his work. This could involve organizing public lectures, workshops, or participating in science communication initiatives.
  4. Interdisciplinary Collaboration: Although Prof. Attia has collaborated internationally, further interdisciplinary collaborations with fields such as biomedical engineering, data science, or artificial intelligence could provide new insights and enhance the applicability of his research in different contexts.
  5. Grant Acquisition and Funding: Securing additional grants and funding for new research projects can help support and expand ongoing work. Exploring new funding opportunities and fostering relationships with potential sponsors or industry partners could bolster research capabilities and resources.

Conclusion

Prof. Dr. Mohamed Attia’s recognition as a leading researcher in analytical chemistry is well-deserved, reflecting his innovative research, global impact, and extensive contributions to the field. His award-winning work, notable publications, and collaborative projects underscore his prominence in advancing disease diagnosis and environmental solutions. To further enhance his research impact, focusing on consistent publication, expanding research applications, improving outreach, fostering interdisciplinary collaborations, and securing additional funding could provide valuable opportunities for growth and continued excellence. Prof. Attia’s ongoing dedication and achievements position him as a pivotal figure in his field, with a promising trajectory for future advancements.