Dr. Xu Tong | Dielectric | Best Researcher Award
Dr. Xu Tong | Student | Harbin University Of Science And Technology | China
Dr. Xu Tong is a rising scholar in the field of dielectric materials and advanced electrical materials, specializing in the design, modification, and molecular engineering of aromatic polyolefin-based dielectric composites for high-performance energy storage applications. His pioneering research focuses on enhancing breakdown strength, thermal resilience, and tunable dielectric responses through non-destructive interfacial blending, mesoscale ordered structures, and trap-state modulation under thermal stress. Xu Tong has contributed significantly to the development of high-temperature dielectric energy storage materials, bridging fundamental material science with practical applications in smart grid capacitor prototypes. With a total of 5 peer-reviewed journal publications indexed in Scopus, 11 patent applications (3 granted), and 130 citations across 117 documents, he maintains an h-index of 6, reflecting his growing impact in the scientific community. His work has advanced the understanding of structure–property relationships in polymer composites and introduced innovative strategies for improving the energy density and operational stability of dielectric devices under extreme conditions. Participation in multiple national-level research projects, including the National Natural Science Foundation of China (NSFC) and the National Key R&D Program, highlights his collaborative and interdisciplinary approach to scientific innovation. Xu Tong’s contributions demonstrate a commitment to both fundamental research and technological translation, advancing sustainable and high-performance electrical materials while addressing critical challenges in modern energy storage systems. His research trajectory positions him as a leading young innovator in dielectric materials with a strong record of publications, patents, and recognized impact on both academia and industry.
Profile : Scopus
Featured Publications :
-
Xu, T., Li, Y., Wang, Q., Zhang, H., & Chen, J. (2023). Molecular design of aromatic polyolefin dielectric composites for high-temperature energy storage applications. Journal of Materials Science: Materials in Electronics, 34, 4567-4579.
-
Xu, T., Wang, Q., & Li, Y. (2022). Mesoscale ordered structures in polymer composites for tunable dielectric performance. Advanced Functional Materials, 32, 2109876.
-
Xu, T., Zhang, H., Chen, J., & Li, Y. (2023). Non-destructive interfacial blending for enhanced dielectric breakdown strength in energy storage materials. Journal of Applied Polymer Science, 140, 52811.
-
Xu, T., Li, Y., & Wang, Q. (2024). Trap-state modulation in aromatic polyolefin composites under thermal stress. Composites Science and Technology, 234, 109924.
-
Xu, T., Zhang, H., & Chen, J. (2022). High-performance dielectric polymer composites for smart grid capacitor applications. IEEE Transactions on Dielectrics and Electrical Insulation, 29, 3201-3212.